Outline

Update

- Mixture Experiment
 - **–ALF Experiment**
 - »10 test lanes
 - »SCB
 - » Texas Overlay

Structural performance vs. mixture performance

Project Status Update

FHWA ALF test lanes

- Mixture Experiment

- » S-VECD (Simplified Viscoelastic Continuum Damage): Completed
- » SCB (Semi-Circular Bend): Completed
- » Texas Overlay: Completed
- » Florida IDT: On-going
- » Beam Fatigue: On-going

Asphalt binder characterization: On-going

- » Extraction
- » PG grading, LAS, MSCR
- » HP-GPC, SARA
- In acquisition
 - Florida DOT
 - Colorado DOT

FHWA ALF Test Lanes Overview

	Asphalt Mixture Description							
Lane #	Binder	% RBR		Virgin Binder	Warm-Mix Technology			
	Content (%)	RAP	RAS	PG				
L1	5.08			64-22				
L2	5.07	40		58-28	Water foam			
L3	4.98		20	64-22				
L4	4.95	20		64-22	Evotherm			
L5	4.60	40		64-22				
L6	4.91	20		64-22				
L7	4.91		20	58-28				
L8	4.95	40		58-28				
L9	4.98	20		64-22	Water foam			
L11	4.89	40		58-28	Evotherm			

Semi Circular Bend (SCB) Test

- LADOTD TR 30/ASTM D8044
- **Temperature: 25°C**
- **Half-circular Specimen**
 - Laboratory prepared
 - Field core
 - 150mm diameter X 57mm thickness
 - simply-supported and loaded at mid-point

Notch controls path of crack propagation

- 25.4-, 31.8-, and 38.0-mm

LTA: 5 days, 85°C

- Loading type
 - Monotonic
 - 0.5 mm/min
 - To failure

Record Load and Vertical Deformation

Compute Critical Strain Energy: Jc

Load (kN)

0.4

02

SCB Test – Analysis

Apply load to specimen in displacement control

- 0.5 mm/min (slow rate);
- Collect force and displacement
 - sampling rate of 10 Hz;
- Plot force versus displacement
- Compute U: area under the curve up to peak load
 - For each notch depth
- Plot notch depth versus the corresponding U
- Determine slope of the line (notch depth vs U graph)
- Compute Jc: slope of line sample thickness

 $J_c = -(\frac{1}{b})\frac{du}{da}$ Jc= critical strain energy release rate (kJ/m²); b = sample thickness (m); a = notch depth (m); U = strain energy to failure (kilo-Joule, kJ); and dU/da = change of strain energy with notch depth, KJ/m.

SCB at Intermediate Temperature

• Specimen Preparation QC Sheet

	A	В	С	D	E	F	G	Н	I	J	К	L
6	Target Notch -					25.4						
			Deviation									
			from									
			Target							Left	Right	middle
7	Notch De	pth (mm)	(mm)	Notch Wid	lth, 3.0 mm	Thickne	ess (mm)	Diamet	er (mm)	center	center	height
8	1.0	25.5	0.1	1.0	2.7	1.0	57.4	1.0	149.3	73.5	73.3	72.9
9	2.0	25.6	0.2	2.0	2.8	2.0	57.4	2.0	149.2	74.5	73.8	72.8
10	3.0	24.0	1.4	3.0	2.8	3.0	57.3	3.0	149.3	74.1	73.7	
11	AVG	25.0	0.4	AVG	2.8	AVG	57.4	AVG	149.3			
12												

SCB at Intermediate Temperature **Data Analysis** 1.6 -1.4 25.4 mm 1.2 Area (Kn-mm) 1.0 0.8 0.6 0.4 31.8 mm 0.2 38.0-mm 0.0 25 30 40 20 35 Notch Depth (mm)

SCB Test Results, J_c

CoV=14.5%.

ANOVA GLM with least square difference multiple comparison test

SCB Test Results, *J_c* and *|E*|*

Sensitivity to RAP, RAS Content (PG 64-22, HMA)

SCB Test Results, *J_c* and *|E*|*

Sensitivity to Asphalt Binder Grade

SCB Test Results, *J_c* and *|E*|*

Sensitivity to Asphalt Binder Grade

SCB Test Results, *J_c* vs. ALF Test Lanes *N_f* LTRC

Pavement Responses Under Load

Structural layout of ALF Test Lanes

ALF Lanes	AC Layer Thickness (cm)	Aggregate Base Modulus (MPa)	Subgrade Modulus (MPa)
L 1	11.7	115.1	71.2
L 2	11.7	109.6	81.3
L 3	11.2	103.4	54.5
L 4	11.6	83.4	72.4
L 5	10.4	96.5	49.0
L 6	11.7	82.7	103.4
L 7	10.8	83.4	126.2
L 8	11.4	85.5	61.4
L 9	10.5	111.0	57.9
L 11	10.3	90.3	57.2

NOTE: Aggregate base layer thickness = 56 cm for all lanes.

Structural layout of ALF Test Lanes

ALF Lanes	AC Layer Thickness (cm)	Aggregate Base Modulus (MPa)	Subgrade Modulus (MPa)
L 1	11.7	115.1	71.2
L 2	11.7	109.6	81.3
L 3	11.2	103.4	54.5
L 4	11.6	83.4	72.4
L 5	10.4	96.5	49.0
L 6	11.7	82.7	103.4
L 7	10.8	83.4	126.2
L 8	11.4	85.5	61.4
L 9	10.5	111.0	57.9
L 11	10.3	90.3	57.2

NOTE: Aggregate base layer thickness = 56 cm for all lanes.

SCB Test Results, *J_c* vs. ALF Test Lanes *N_f* Corrected **NCAT**

SCB Test Results, J_c vs. ALF Test Lanes N_f Corrected LTRC

Structural fatigue Performance vs. Mixture Characterization

- depends on mixture's crack resistance, structural layout, stiffness of all layers, traffic loading, and environmental conditions.
- Prediction of allowable number of load repletion to fatigue cracking
 - Incorporate mixture cracking parameter

Compute N_f ASSHTO Pavement ME

Obtain the fatigue life for structures Fatigue model in AASHTOWare Pavement ME Design

$$N_{f} = k_{f1} C C_{H} \beta_{f1} \left(\frac{1}{\varepsilon_{t}}\right)^{k_{f2}\beta_{f2}} \left(\frac{1}{|E^{*}|}\right)^{k_{f3}\beta_{f3}} \text{ with } \begin{cases} C = 10^{4.84 \left(\frac{V_{be}}{V_{a}+V_{be}}-0.69\right)} \\ C = 10^{4.84 \left(\frac{V_{be}}{V_{a}+V_{be}}-0.69\right)} \\ C_{H} = \frac{1}{0.000398 + \frac{0.003602}{1+e^{11.02-3.49H_{AC}}}} \end{cases}$$

where,

- N_f = allowable number of load repetitions to fatigue cracking;
- ε_t = tensile strain at the bottom of asphalt layers beneath the wheel;
- $|E^*|$ = dynamic modulus of the asphalt mixture at loading frequency of 2.5 Hz and temperature of 20°C, psi;
- C_H = thickness correction term for fatigue cracking;
- $k_{f,1-3}$ = global field calibration coefficients, $k_{f1} = 0.007566$, $k_{f2} = 3.9492$, and $k_{f3} = 1.281$;
- $\beta_{f,1-3}$ = local calibration factors (set to 1.0 for global calibration);
- V_{be} = effective binder content by volume, %;
- V_a = air void content, %; and
- H_{AC} = total thickness of asphalt layers, in.

AASHTOWare

ME Design

Paveme

AASHO

Compute N_f ASSHTO Pavement ME Strain Response

> ALF pavement structures:

Asphalt mixture:

□laboratory |E*| test

Aggregate base & subgrade:
Imodulus

Thicknesses of Layers

Strain Response

> LVECD

Layered ViscoElastic pavement analysis for Critical Distresses

- Developed at North Carolina State University¹
- Technical aspects
 - □Asphalt mixture: linear viscoelastic
 - □Base & subgrade: linear elastic
 - □Interface: fully bounded
 - Consider moving loading impacts via fast Fourier transform techniques.

NOTE: ¹Eslaminia, M., S. Thirunavukkarasu, M. N. Guddati, and Y. R. Kim. Accelerated Pavement Performance Modeling Using Layered Viscoelastic Analysis. *Proc., 7th RILEM International Conference on Cracking in Pavements*, Delft, 2012, pp. 497-506.

Tensile strain responses

Layered Viscoelastic Pavement Analysis for Critical Distresses

Tensile Strain at Bottom of AC Layer

NOTE: At the bottom of asphalt layer, the loading frequency = 2.5 Hz.

Mixture property and ALF Test Lanes fatigue life

		Mix	ture Prope	erty	ALF Lane Fatigue Life	
Lanes	V _a (%)	V _{be} (%)	SCB <i>Jc</i> (kJ/m²)	E* @ 20°C, 2.5Hz (psi)	Measured passes to 1 st crack	Predicted by AASHTO ME Eq.
L1	4.3	11.8	0.55	975,462	368,254	2,627,003
L3	3.3	11.3	0.38	1,561,815	42,399	5,341,760
L4	4.4	11.2	0.46	1,258,140	88,740	1,607,996
L5	5.2	10.7	0.34	1,753,802	36,946	1,529,784
L6	3.6	11.2	0.41	1,302,897	122,363	2,785,564
L7	4.1	11.3	0.32	1,540,264	23,005	3,035,187
L8	4.9	11.5	0.47	1,152,218	47,679	1,170,212
L9	3.7	11.4	0.46	1,129,115	270,058	2,581,196
L11	4.9	11.7	0.59	1,332,941	81,044	1,111,697

$$N_{f} = k_{f1} C C_{H} \beta_{f1} \left(\frac{1}{\varepsilon_{t}}\right)^{k_{f2}\beta_{f2}} \left(\frac{1}{|E^{*}|}\right)^{k_{f3}\beta_{f3}}$$

24

Mixture property and ALF Test Lanes fatigue life

		Mix	ture Prope	erty	ALF Lane Fatigue Life		
Lanes	V _a (%)	V _{be} (%)	SCB <i>Jc</i> (kJ/m²)	E* @ 20°C, 2.5Hz (psi)	Measured passes to 1 st crack	Predicted by AASHTO ME Eq.	
L1	4.3	11.8	0.55	975,462	368,254	2,627,003	
L3	3.3	11.3	0.38	1,561,815	42,399	5,341,760	
L4	4.4	11.2	0.46	1,258,140	88,740	1,607,996	
L5	5.2	10.7	0.34	1,753,802	36,946	1,529,784	
L6	3.6	11.2	0.41	1,302,897	122,363	2,785,564	
L7	4.1	11.3	0.32	1,540,264	23,005	3,035,187	
L8	4.9	11.5	0.47	1,152,218	47,679	1,170,212	
L9	3.7	11.4	0.46	1,129,115	270,058	2,581,196	
L11	4.9	11.7	0.59	1,332,941	81,044	1,111,697	

$$N_{f} = k_{f1} C C_{H} \beta_{f1} \left(\frac{1}{\varepsilon_{t}}\right)^{k_{f2}\beta_{f2}} \left(\frac{1}{|E^{*}|}\right)^{k_{f3}\beta_{f3}}$$

Limitations: AASHTO Pavement ME

- Primarily controlled by mixture's stiffness
- Lack of a material parameter representing mixture's fatigue crack resistance

$$N_{f} = k_{f1} C C_{H} \beta_{f1} \left(\frac{1}{\varepsilon_{t}}\right)^{k_{f2}\beta_{f2}} \left(\frac{1}{|E^{*}|}\right)^{k_{f3}\beta_{f3}}$$

Solution: AASHTO Pavement ME Jc-based fatigue model

Incorporate parameter representing mixture's crack resistance

$$N_{f} = k_{f1} C C_{H} \beta_{f1} \left(\frac{1}{\varepsilon_{t}}\right)^{k_{f2} \beta_{f2}} \left(\frac{1}{|E^{*}|}\right)^{k_{f3}' \beta_{f3}} (J_{c})^{k_{f4} \beta_{f4}}$$

where,

 J_c = critical strain energy release rate obtained from SCB test at intermediate temperature, kJ/m²;

$$k_{f4}$$
 = global calibration coefficient for the J_c parameter;

$$B_{f4}$$
 = local calibration factor (set to 1.0); and

 k'_{f3} = adjusted global calibration factor for dynamic modulus with incorporation of J_c .

Measured vs. Predicted N_f Jc-based fatigue model

NOTE: Measured Nf = number of ALF passes to 1st surface crack.

Texas Overlay TXDOT Designation: Tex-248-F (2014) → Load

- Displacement controlled
- ✤ triangular shape
- ✤ Amplitude: 0.06 cm
- ✤ 1 cycle = 10 seconds

➤ Temperature 25°C

Test jig manufactured by IPC Global

Use ball bearing to reduce friction

Texas Overlay

➤ Concerns

Load does not start from zero

➤ Resolution

Test template modified by IPC Global

Current version – UTS036 V1.01 (released Aug 18, 2016)

✤Use ball bearing in jig

Texas Overlay Analysis

- Peak load in each cycle
- Plot peak tensile load versus cycle number
- Determine max. load
- Plot reduction of max. Load vs Cycle number
- Nf is defined as the cycle number at 93% percent decline in load

Overlay Test Results, N_f FHWA ALF Mixtures

NOTE: A total of 3-5 replicates were tested for each mixture. CoV ranges from 18.1% to 42.4% with an average of 31.6%.

Overlay Test Results, N_f and |E*|

Sensitivity to RAP/RAS content (PG 64-22, HMA)

Overlay Test Results, N_f and |E*|

Sensitivity to Binder Grade

Overlay Test Results, N_f and |E*|

Sensitivity to Binder Grade

Cracking: ALF Test Lane vs. Mixture Performance Overlay Test Results, N_f

Ranking		Structure	Mixture	250
		ALF	N _{f, ОТ}	200
	1	L1	L9	<u>₽</u>
Best Three	2	L9	L1	0150
	3	L6	L4	s to
	4	L4	L11	
Middle Three	5	L11	L6	y = 73.159ln(x) - 204.73 R ² = 0.7281
	6	L8	L8	50
Worst Three	6	L3	L5	
	7	L5	L3	0 100 200 300 40
	8	L7	L7	ALF Passes to 1 st Surface Crack (thousands)

Summary

SCB test at intermediate temperature

- Variability
 - » Average COV ~ 15%
- Mixture from the FHWA test lanes
- Sensitive to RAP/RAS content
 - » Increased %RBR SCB Jc
- Sensitive to binder grade
 - » More pronounced effect on mixtures with %RBR from RAP than RAS
- Structural performance to mixture characterization
 - » Good correlation, R²=0.68
- Pavement ME fatigue crack prediction
 - » Mixture stiffness
 - » Inconsistence ranking/magnitude
- Proposed fatigue predictive equation with SCB $\rm J_{c}$
 - » Good correlation to measured N_f from ALF test lanes
 - » More field data

Summary

Overlay Test

- Variability

» Average COV 31.6%

- Sensitive to RAP/RAS content
 - » Decreased number of cycles to failure
- Sensitive to binder grade
 - » More pronounced effect on mixtures with %RBR from RAP than RAS
- Structural performance to mixture characterization
 - » Good correlation, R²=0.73

